8,593 research outputs found

    Measurement of angular momentum transport in turbulent flow between independently rotating cylinders

    Full text link
    We present measurements of the angular momentum flux (torque) in Taylor-Couette flow of water between independently rotating cylinders for all regions of the \(\Omega_1, \Omega_2\) parameter space at high Reynolds numbers, where Ω1\Omega_1 \(\Omega_2\) is the inner (outer) cylinder angular velocity. We find that the Rossby number Ro = \(\Omega_1 - \Omega_2\)/\Omega_2 fully determines the state and torque GG as compared to G(Ro = \infty) \equiv \Gi. The ratio G/\Gi is a linear function of Ro−1Ro^{-1} in four sections of the parameter space. For flows with radially-increasing angular momentum, our measured torques greatly exceed those of previous experiments [Ji \textit{et al.}, Nature, \textbf{444}, 343 (2006)], but agree with the analysis of Richard and Zahn [Astron. Astrophys., \textbf{347}, 734 (1999)].Comment: 4 pages, 4 figures, to appear in Physical Review Letter

    Multiple verification in computational modeling of bone pathologies

    Full text link
    We introduce a model checking approach to diagnose the emerging of bone pathologies. The implementation of a new model of bone remodeling in PRISM has led to an interesting characterization of osteoporosis as a defective bone remodeling dynamics with respect to other bone pathologies. Our approach allows to derive three types of model checking-based diagnostic estimators. The first diagnostic measure focuses on the level of bone mineral density, which is currently used in medical practice. In addition, we have introduced a novel diagnostic estimator which uses the full patient clinical record, here simulated using the modeling framework. This estimator detects rapid (months) negative changes in bone mineral density. Independently of the actual bone mineral density, when the decrease occurs rapidly it is important to alarm the patient and monitor him/her more closely to detect insurgence of other bone co-morbidities. A third estimator takes into account the variance of the bone density, which could address the investigation of metabolic syndromes, diabetes and cancer. Our implementation could make use of different logical combinations of these statistical estimators and could incorporate other biomarkers for other systemic co-morbidities (for example diabetes and thalassemia). We are delighted to report that the combination of stochastic modeling with formal methods motivate new diagnostic framework for complex pathologies. In particular our approach takes into consideration important properties of biosystems such as multiscale and self-adaptiveness. The multi-diagnosis could be further expanded, inching towards the complexity of human diseases. Finally, we briefly introduce self-adaptiveness in formal methods which is a key property in the regulative mechanisms of biological systems and well known in other mathematical and engineering areas.Comment: In Proceedings CompMod 2011, arXiv:1109.104

    Explicit characterization of the identity configuration in an Abelian Sandpile Model

    Full text link
    Since the work of Creutz, identifying the group identities for the Abelian Sandpile Model (ASM) on a given lattice is a puzzling issue: on rectangular portions of Z^2 complex quasi-self-similar structures arise. We study the ASM on the square lattice, in different geometries, and a variant with directed edges. Cylinders, through their extra symmetry, allow an easy determination of the identity, which is a homogeneous function. The directed variant on square geometry shows a remarkable exact structure, asymptotically self-similar.Comment: 11 pages, 8 figure

    Cosmological effects of the Galileon term in Scalar-Tensor Theories

    Full text link
    We study the cosmological effects of a Galileon term in scalar-tensor theories of gravity. The subset of scalar-tensor theories considered are characterized by a non-minimal coupling F(σ)RF(\sigma) R, a kinetic term with arbitrary sign Z(∂σ)2Z (\partial \sigma)^2 with Z=±1Z = \pm 1, a potential V(σ)V(\sigma), and a Galileon term G3(σ,(∂σ)2)□σG_3(\sigma, (\partial \sigma)^2) \square \sigma. In addition to the modified dynamics, the Galileon term provides a screening mechanism to potentially reconcile the models with General Relativity predictions inside a Vainshtein radius. Thanks to the Galileon term, the stability conditions, namely ghost and Laplacian instabilities, in the branch with a negative kinetic term (Z=−1Z = -1) are fulfilled for a large volume of the parameter space. Solving numerically the background evolution and linear perturbations, we derive the constraints on the cosmological parameters in presence of a Galileon term for different combination of the cosmic microwave background (CMB) data from Planck, baryon acoustic oscillations (BAO) measurements from BOSS, and supernovae from the Pantheon compilation. We find that the Galileon term alters the dynamics of all the studied cases. For a standard kinetic term (Z=1Z = 1), we find that Planck data and a compilation of BAO data constrain the Galileon term to small values that allow screening very inefficiently. For a negative kinetic term (Z=−1Z = -1), a Galileon term and a non-zero potential lead to an efficient screening in a physically viable regime of the theory, with a value for the Hubble constant today which alleviates the tension between its CMB and local determinations. For a vanishing potential, the case with Z=−1Z=-1 and the Galileon term driving the late acceleration of the Universe is ruled out by Planck data.Comment: 23 pages, 15 figures, 4 table

    SiPM and front-end electronics development for Cherenkov light detection

    Full text link
    The Italian Institute of Nuclear Physics (INFN) is involved in the development of a demonstrator for a SiPM-based camera for the Cherenkov Telescope Array (CTA) experiment, with a pixel size of 6×\times6 mm2^2. The camera houses about two thousands electronics channels and is both light and compact. In this framework, a R&D program for the development of SiPMs suitable for Cherenkov light detection (so called NUV SiPMs) is ongoing. Different photosensors have been produced at Fondazione Bruno Kessler (FBK), with different micro-cell dimensions and fill factors, in different geometrical arrangements. At the same time, INFN is developing front-end electronics based on the waveform sampling technique optimized for the new NUV SiPM. Measurements on 1×\times1 mm2^2, 3×\times3 mm2^2, and 6×\times6 mm2^2 NUV SiPMs coupled to the front-end electronics are presentedComment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Neural Simplex Architecture

    Get PDF
    We present the Neural Simplex Architecture (NSA), a new approach to runtime assurance that provides safety guarantees for neural controllers (obtained e.g. using reinforcement learning) of autonomous and other complex systems without unduly sacrificing performance. NSA is inspired by the Simplex control architecture of Sha et al., but with some significant differences. In the traditional approach, the advanced controller (AC) is treated as a black box; when the decision module switches control to the baseline controller (BC), the BC remains in control forever. There is relatively little work on switching control back to the AC, and there are no techniques for correcting the AC's behavior after it generates a potentially unsafe control input that causes a failover to the BC. Our NSA addresses both of these limitations. NSA not only provides safety assurances in the presence of a possibly unsafe neural controller, but can also improve the safety of such a controller in an online setting via retraining, without overly degrading its performance. To demonstrate NSA's benefits, we have conducted several significant case studies in the continuous control domain. These include a target-seeking ground rover navigating an obstacle field, and a neural controller for an artificial pancreas system.Comment: 12th NASA Formal Methods Symposium (NFM 2020

    Using Resonances to Control Chaotic Mixing within a Translating and Rotating Droplet

    Full text link
    Enhancing and controlling chaotic advection or chaotic mixing within liquid droplets is crucial for a variety of applications including digital microfluidic devices which use microscopic ``discrete'' fluid volumes (droplets) as microreactors. In this work, we consider the Stokes flow of a translating spherical liquid droplet which we perturb by imposing a time-periodic rigid-body rotation. Using the tools of dynamical systems, we have shown in previous work that the rotation not only leads to one or more three-dimensional chaotic mixing regions, in which mixing occurs through the stretching and folding of material lines, but also offers the possibility of controlling both the size and the location of chaotic mixing within the drop. Such a control was achieved through appropriate tuning of the amplitude and frequency of the rotation in order to use resonances between the natural frequencies of the system and those of the external forcing. In this paper, we study the influence of the orientation of the rotation axis on the chaotic mixing zones as a third parameter, as well as propose an experimental set up to implement the techniques discussed.Comment: 15 pages, 6 figure

    Measurements and tests on FBK silicon sensors with an optimized electronic design for a CTA camera

    Full text link
    In October 2013, the Italian Ministry approved the funding of a Research & Development (R&D) study, within the "Progetto Premiale TElescopi CHErenkov made in Italy (TECHE)", devoted to the development of a demonstrator for a camera for the Cherenkov Telescope Array (CTA) consortium. The demonstrator consists of a sensor plane based on the Silicon Photomultiplier (SiPM) technology and on an electronics designed for signal sampling. Preliminary tests on a matrix of sensors produced by the Fondazione Bruno Kessler (FBK-Trento, Italy) and on electronic prototypes produced by SITAEL S.p.A. will be presented. In particular, we used different designs of the electronics in order to optimize the output signals in terms of tail cancellation. This is crucial for applications where a high background is expected, as for the CTA experiment.Comment: 5 pages, 6 figures; Proceedings of the 10th Workshop on Science with the New Generation of High-Energy Gamma-ray experiments (SciNeGHE) - PoS(Scineghe2014)00
    • …
    corecore